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Abstract The aim of the paper is to obtain some theoretical and numerical properties of
Saaty’s and Koczkodaj’s inconsistencies of pairwise comparison matrices (PRM). In the case
of 3×3 PRM, a differentiable one-to-one correspondence is given between Saaty’s inconsis-
tency ratio and Koczkodaj’s inconsistency index based on the elements of PRM. In order to
make a comparison of Saaty’s and Koczkodaj’s inconsistencies for 4×4 pairwise comparison
matrices, the average value of the maximal eigenvalues of randomly generated n × n PRM
is formulated, the elements ai j (i < j) of which were randomly chosen from the ratio scale
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with equal probability 1/(2M − 1) and a ji is defined as 1/ai j . By statistical analysis, the
empirical distributions of the maximal eigenvalues of the PRM depending on the dimension
number are obtained. As the dimension number increases, the shape of distributions gets
similar to that of the normal ones. Finally, the inconsistency of asymmetry is dealt with,
showing a different type of inconsistency.

Keywords Pairwise comparison matrix · Inconsistency · Inconsistency index · Randomly
generated pairwise comparison matrix

1 Introduction

In multiattribute decision making (MADM), the aim is to rank a finite number of alternatives
with respect to a finite number of attributes. Tender evaluations, public procurement pro-
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cesses, selections of applicants for positions, decisions on the best portfolios in investments
are real-life decision situations in which MADM models can be used.

In solving a multiattribute decision problem, one needs to know the importances or weights
of the not equally important attributes and also the evaluations of the alternatives with respect
to the attributes. One technique, often used, is the method of pairwise comparisons a con-
cept which is more than 200 years old. Condorcet (1785) and Borda (1781) introduced it for
voting problems in the 1780s by using only 0 and 1 in the pairwise comparison matrices.
In experimental psychology, Thorndike (1920) and Thurstone (1927) used it in the 1920s.
Especially, pairwise comparisons based on a ratio scale is one of the basic pillars of the
Analytic Hierarchy Process (Saaty 1980).

Given n objects, e.g., attributes or alternatives, we suppose that the decision maker(s) is
(are) able to compare any two of them. In preference modelling, this assumption is called
comparability. For any pairs (i, j), i, j = 1, 2, . . . , n, the decision maker is requested to tell
how many times the i th object is preferred (or more important) than the j th one, which result
is denoted by ai j .

By definition,

ai j > 0; (1.1)

aii = 1; (1.2)

ai j = 1

a ji
, (1.3)

for any pair of indices (i, j), i, j = 1, 2, . . . , n. The name of matrices A = [ai j ]i, j=1,2,...,n ∈
Rn×n with properties (1.1–1.3) is pairwise comparison matrices or positive reciprocal matri-
ces (PRM).

A pairwise comparison matrix A is consistent if it satisfies the transitivity property

ai j a jk = aik (1.4)

for any indices (i, j, k), i, j, k = 1, 2, . . . , n. Otherwise, A is inconsistent. It was shown
by Saaty (1980) that a pairwise comparison matrix is consistent if and only if it is of rank
one. When a pairwise comparison matrix A is consistent, the normalized weights computed
from A are unique. Otherwise, an approximation of A by a consistent matrix (determined by
a vector) is needed.

A crucial point of this methodology is to determine the inconsistency of the pairwise com-
parison matrices. The only widely accepted rule of inconsistency is due to Saaty (1980), but
his definition does not meet some important requirements (see Sect. 2). The aim of the paper
is to make some comparison on Saaty’s and Koczkodaj’s inconsistencies of pairwise compar-
ison matrices. The two approaches seem to be completely different, because while Saaty’s
inconsistency ratio is an index for the departure from randomness, Koczkodaj’s inconsistency
index is related to the departure from consistency with the possibility to locate inconsistency.

In Sect. 2, the question is how to investigate Saaty’s and Koczkodaj’s inconsistencies. In
Sect. 3, the inconsistency formulas of 3 × 3 pairwise comparison matrices are studied from
theoretical and computational points of view. A differentiable one-to-one correspondence
is given between Saaty’s and Koczkodaj’s inconsistencies. In Sect. 4, by using statistical
tools, the average value of the maximal eigenvalues of randomly generated n × n PRM
is formulated, the elements ai j (i < j) of which were randomly chosen from the ratio
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defined as 1/ai j . Then, a comparison of Koczkodaj’s inconsistency index and Saaty’s incon-
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sistency ratio is given for 4 × 4 pairwise comparison matrices. In Sect. 5, the inconsistency of
random pairwise comparison matrices is investigated and by statistical analysis, the empirical
distributions of the maximal eigenvalues of the PRM depending on the dimension number
are obtained. As the dimension number increases, the shape of distributions gets similar to
that of the normal ones. In Sect. 6, the inconsistency of asymmetry is dealt with, showing a
different type of inconsistency.

2 Inconsistency indices

In real-life decision problems, pairwise comparison matrices are rarely consistent. Never-
theless, decision makers are interested in the level of consistency of the judgements, which
somehow expresses the goodness or “harmony” of pairwise comparisons totally, because
inconsistent judgements may lead to senseless decisions.

Saaty (1980) proposed the following method for calculating inconsistency. Computing
the largest eigenvalue λmax of A, he has shown that λmax ≥ n and equals to n if and only if
A is consistent. Then, inconsistency index (C In) is defined by

C In = λmax − n

n − 1
,

which gives the average inconsistency. Mathematically, inconsistency is not but a rescaling
of the largest eigenvalue. Since λmax ≥ n, C In is always non-negative. The inconsistency
index in its own has no meaning, unless we compare it with some benchmark to determine
the magnitude of the deviation from consistency. Let a set of e.g., 500 random pairwise com-
parison matrices of size n × n be generated so that each element ai j (i < j) be randomly
chosen from the scale
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and a ji is defined as
1

ai j
. Let RIn denote the average value of the randomly obtained incon-

sistency indices, which depends not only on n but on the method of generating random
numbers, too. The inconsistency ratio (C Rn) of a given pairwise comparison matrix A indi-
cating inconsistency is defined by

C Rn = C In

RIn
.

If the matrix is consistent, then λmax = n, so C In = 0 and C Rn = 0, as well. Saaty con-
cluded that an inconsistency ratio of about 10% or less may be considered acceptable. The
intuitive meaning of the 10% rule is skipped by several authors. A statistical interpretation
of the 10% rule is given by Vargas (1982). More recently, Saaty’s threshold is 5% for 3 × 3,
and 8% for 4 × 4 matrices (Saaty 1994).

It is emphasized that the inconsistency ratio C Rn is related to Saaty’s scale. The struc-
turing process in AHP specifies that items to be compared should be within one order of
magnitude. This helps avoid inaccuracy associated with cognitive overload as well as ai j a jk

relationships that are beyond the 1–9 scale, see e.g. Lane and Verdini (1989) and Murphy
(1993). If only two attributes (or alternatives) are present, inconsistency is always zero, since
the decision maker gives only one importance ratio.

Though the only one widely accepted rule of inconsistency for any order of matrix is due
to Saaty, its consistency definition has some drawbacks. By Koczkodaj (1993), “The author
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of this paper truly believes that failure of the pairwise comparison method to become more
popular has its roots in the consistency definition.” The major drawback of Saaty’s inconsis-
tency definition seems to be the 10% rule of thumb. Another weakness of it is related to the
location of inconsistency or rather its lack. Since an eigenvalue is a global characteristic of
a matrix, by examining it, we cannot say which matrix element contributed to the increase
of inconsistency. Some improvements can be found in Saaty (1990).

A general 3 × 3 pairwise comparison matrix has three comparisons a, b, c. In order to
define Koczkodaj’s inconsistency index (Duszak and Koczkodaj 1994; Koczkodaj 1993),
consider a general 3 × 3 pairwise comparison matrix. Reduce this reciprocal matrix to a
vector of three coordinates (a, b, c). In the consistent cases, the equality b = ac holds. It is
always possible to produce three consistent reciprocal matrices (represented by three vectors)
by computing one coordinate from the combination of the remaining two coordinates. These

three vectors are:

(
b

c
, b, c

)
, (a, ac, c) and

(
a, b,

b

a

)
.

The inconsistency index of a general 3 × 3 pairwise comparison matrix is defined by
Koczkodaj as the relative distance to the nearest consistent 3×3 pairwise comparison matrix
represented by one of these three vectors.

Definition 2.1 The inconsistency index of a general 3 × 3 pairwise comparison matrix is
equal to

C M(a, b, c) = min

{
1

a

∣∣∣a − b

c

∣∣∣, 1

b

∣∣∣b − ac
∣∣∣, 1

c

∣∣∣c − b

a

∣∣∣
}

. (2.1)

The inconsistency index of an n × n (n > 2) reciprocal matrix A is equal to

C M(A) = max

{
min

{∣∣∣1 − b

ac

∣∣∣,
∣∣∣1 − ac

b

∣∣∣
}

for each triad (a, b, c) in A

}
. (2.2)

In the case of matrices of higher orders, the inconsistency index of a matrix element is
equal to the maximum of C M of all possible triads which include this element.

Note that the inconsistency index is not a metric. By Duszak and Koczkodaj (1994), the
number of all possible triads of the n × n comparison matrices is equal to

n(n − 1)(n − 2)/3!. (2.3)

In the case of 4 × 4 pairwise comparison matrices and a scale of 1–5, the threshold should
be 1/3 (Koczkodaj et al. 1997).

Other inconsistency indices have been introduced. The inverse inconsistency index sug-
gested by Dodd et al. (1993), Monsuur (1996) applied a transformation of the maximal
eigenvalues, Peláez and Lamata (2003) examined all the triples of elements and used the
determinant to indicate consistency, furthermore, Stein and Mizzi (2007) obtained the har-
monic consistency index. Another type of inconsistency index is the distance from a specific
consistent matrix. Chu et al. (1979) used the least squares estimation error, Crawford and
Williams (1985) the logarithmic least squares estimation error, furthermore, Aguarón and
Moreno-Jiménez (2003) the geometric consistency index for the logarithmic least squares
method (the row geometric mean method).

Table 1 summarizes some weighting methods and inconsistency indices, namely, the eigen-
vector method (EM) and inconsistency ratio (CR) (Saaty 1980), the least squares method
(LSM) (Chu et al. 1979), the chi squares method (χ2 M) (Jensen 1983), the singular value
decomposition method (SVDM) (Gass and Rapcsák 2004) and Koczkodaj’s inconsistency
index (Koczkodaj 1993), the logarithmic least squares method (LLSM) (Crawford and Wil-
liams 1985) and GCI (Aguarón and Moreno-Jiménez 2003).
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3 Inconsistency of 3 × 3 pairwise comparison matrices

In this part, it is shown that there exists a one-to-one correspondence between Saaty’s incon-
sistency ratio and Koczkodaj’s inconsistency index.

The general form of 3 × 3 positive reciprocal matrices is as follows:⎛
⎜⎝

1 a b

1/a 1 c

1/b 1/c 1

⎞
⎟⎠ , a, b, c ∈ R+. (3.1)

By Tummala and Ling (1998), the maximal eigenvalues of matrices (3.1) can be explicitly
given by the function

λmax(a, b, c) = 1 + 3

√
b

ac
+ 3

√
ac

b
, (a, b, c) ∈ R3+. (3.2)

A consequence of this formula is that λmax does not change if the elements a and b are
multiplied by the same constant. Thus, the CR-inconsistencies of matrices⎛

⎜⎝
1 2 2

1 2

1

⎞
⎟⎠ ,

⎛
⎜⎝

1 7 7

1 2

1

⎞
⎟⎠ ,

⎛
⎜⎝

1 9 9

1 2

1

⎞
⎟⎠ (3.3)

are equal, though the consistency violations in the matrices are different.
By formula (3.2), it is possible to make a connection between λmax and the inconsistency

originated from the elements a, b, c of the positive reciprocal matrices.

Definition 3.1 In the case of (3.1), let T denote the maximum of two ratios, ac
b and b

ac , i.e.,
T = max

{ ac
b , b

ac

}
.

If the matrix is consistent, T equals to 1, otherwise, T > 1.

Theorem 3.1 In the case of 3 × 3 pairwise comparison matrices, there exists a differentia-
ble one-to-one correspondence for every pair of the inconsistency CR defined by Saaty, the
inconsistency CM defined by Koczkodaj and T = max

{ ac
b , b

ac

}
as follows:

C R(T ) =
3
√

T + 1
3√T

− 2

2RI3
, T > 1. (3.4)

T (C R) =
(

1 + RI3 C R + √
RI3 C R(2 + RI3 C R)

)3
, C R ∈ (0,∞), (3.5)

C M(T ) = 1 − 1

T
, T (C M) = 1

1 − C M
, C M ∈ (0, 1), (3.6)

C R(C M) =
1

3
√

1 − C M
+ 3

√
1 − C M − 2

2RI3
, C M ∈ (0, 1), (3.7)

C M(C R) = 1 − 1(
1 + RI3C R + √

RI3C R(2 + RI3C R)
)3 , C R ∈ (0,∞). (3.8)
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Proof From Definition 3.1, it follows that

3

√
ac

b
+ 3

√
b

ac
= 3

√
T + 1

3
√

T
.

Since λmax = 1 + 3
√

ac
b + 3

√
b
ac , it can be written in the equivalent form

λmax = 1 + 3
√

T + 1
3
√

T
. (3.9)

Saaty defined the inconsistency ratio as C R =
λmax−n

n−1
RIn

. Let us substitute n = 3 and (3.9) for
the formula of C R, and (3.4) is proved.

Function C R(T ) is differentiable on the domain T > 1, and

C R′(T ) =
1 − 1

3√T
2

6RI3
3
√

T
2 , (3.10)

which is positive if T > 1, consequently, C R is invertable in this domain. Its inverse function
is equal to

T (C R) =
(

1 + RI3 C R + √
RI3 C R(2 + RI3 C R)

)3
, C R ∈ (0,∞),

which proves (3.5).
Since

C M = min

{
1

a

∣∣∣a − b

c

∣∣∣, 1

b

∣∣∣b − ac
∣∣∣, 1

c

∣∣∣c − b

a

∣∣∣
}

= min

{∣∣∣1 − b

ac

∣∣∣, ∣∣∣1 − ac

b

∣∣∣, ∣∣∣1 − b

ac

∣∣∣
}

= min

{∣∣∣1 − b

ac

∣∣∣, ∣∣∣1 − ac

b

∣∣∣
}

,

it follows that

C M(T ) = 1 − 1

T
, C M ′(T ) = 1

T 2 , T > 1,

and

T (C M) = 1

1 − C M
, T ′(C M) = 1

(1 − C M)2 , C M ∈ (0, 1).

In order to obtain C R(C M), formulas (3.4) and (3.6) are used:

C R(C M) =
1

3
√

1 − C M
+ 3

√
1 − C M − 2

2RI3
, C M ∈ (0, 1). (3.11)

Similarly, formulas (3.5) and (3.6) are used to obtain

C M(C R) = 1 − 1(
1 + RI3C R + √

RI3C R(2 + RI3C R)
)3 , C R ∈ (0,∞). (3.12)

Since the derivatives

C R′(C M) = C R′(T ) T ′(C M) and

C M ′(C R) = C M ′(T ) T ′(C R)

are different from zero, we have one-to-one correspondences. ��
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Corollary 3.1 In the case of 3 × 3 pairwise comparison matrices, the following properties
are equivalent:

C R ≤ 10% (3.13)

1

2.63
= 0.38 ≤ ac

b
≤ 2.63; (3.14)

C M ≤ 0.62. (3.15)

Proof (3.13) ⇔ (3.14): Let x = 3

√
b

ac
. From (3.2) and since λmax corresponding to C R =

10% is 3.1048, (3.13) is equivalent to

x2 − 2.1x + 1 ≤ 0, x > 0.

By solving equality x2 − 2.1x + 1 = 0, x > 0, we obtain that x∗
1 ≈ 1.38 and x∗

2 = 1

x∗
1

≈
0.7244. Thus,

1

x∗ ≤ 3

√
b

ac
≤ x∗

1 ,

which is equivalent to the statement.
(3.13) ⇔ (3.15) follows from (3.11) and (3.12). ��
The intuitional meaning of (3.13) ⇔ (3.14) in Theorem 3.1 may be interpreted by the

following example. Let

A =

⎛
⎜⎜⎝

1 2 6

1/2 1 3

1/6 1/3 1

⎞
⎟⎟⎠ .

Now, a = 2, b = 6, c = 3, and A is consistent
(ac

b
= 1

)
. Let us fix a and b. If, e.g., c = 4,

the inconsistency of matrix A remains acceptable, because

ac

b
= 2 · 4

6
= 1.33 < 2.63.

The maximal value of c, for which matrix A is acceptable by the 10% rule, is 3×2.63 = 7.89.
We remark that the C M-inconsistencies of matrices (3.3) are equal as well.

4 A comparison of Saaty’s and Koczkodaj’s inconsistency indices for 4 × 4 pairwise
comparison matrices

Koczkodaj (1997) reported on concrete inconsistency index calculations based on a ratio
scale 1/5, 1/4, 1/3, 1/2, 1, 2, 3, 4, 5 for 4 × 4 pairwise comparison matrices. He remarked
that in this case, an acceptable threshold of inconsistency is 1/3. In order to make comparisons
between Saaty’s and Koczkodaj’s inconsistency indices, we have to fit Saaty’s threshold to
the ratio scale 1/5, 1/4, 1/3, 1/2, 1, 2, 3, 4, 5.

By the definition of CR, the rule of acceptability of a pairwise comparison matrix is that
the maximal eigenvalue λmax should not be greater than a linear combination of the average
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λmax of randomly generated matrices, denoted by λmax, with a coefficient 0.1, and λmax(= n)

of a consistent matrix, with a coefficient 0.9, i.e.,

C R ≤ 0.10 ⇐⇒ λmax ≤ 0.1λmax + 0.9n. (4.1)

We remark that λmax grows more rapidly (the slope of the approximating line is 2.76) than
n.

Let λ̄max(n, M) denote the average value of the dominant eigenvalue of a randomly gen-
erated n × n matrix the elements of which are chosen from the ratio scale

1

M
,

1

M − 1
, . . . ,

1

2
, 1, 2, . . . , M − 1, M, (4.2)

with equal probability
1

2M − 1
.

Table 2 presents the values of λ̄max(n, M) for n = 3, 4, . . . , 10 and M = 3, 4, . . . , 15.
λ̄max(n, M) can be well approximated by using a 4-parameter quasilinear regression.

Theorem 4.1

λ̄max = 0.5625n − 0.621M + 0.2481Mn + 1.1478 + ε(n, M), (4.3)

where ε(n, M) denotes the approximation error of λ̄max(n, M).

Proof The least-squares optimal solution of the 4-parameter quasilinear approximation prob-
lem

λ̄max(n, M) ≈ αn + βM + γ nM + δ

is as follows:

α = 0.5625,

β = −0.6210,

γ = 0.2481,

δ = 1.1478.

The maximal approximate error ε(n, M), while 3 ≤ n ≤ 10, 3 ≤ M ≤ 15, is 0.35. ��
Let C I (n, M), RI (n, M) and C R(n, M) denote the inconsistency index, the average

value of the randomly obtained inconsistency indices and the inconsistency ratio with respect
to the dimension number n and ratio scale (4.2), respectively. The theorem above provides
an equivalent characterization of the 10% rule as follows:

Corollary 4.1

C R(n, M) = C I (n, M)

RI (n, M)
≤ 0.10 ⇐⇒ λmax ≤ 0.95625n − 0.0621M

+0.02481Mn + 0.1148. (4.4)

Proof By substituting (4.3) for (4.1), we have the result. ��
We emphasize that the condition for the acceptable inconsistency in (4.4) depends only

on the data of the experimental pairwise comparison matrix, namely, on its dimension and
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its largest element. If we use a continuous ratio scale instead of the discrete scale by Saaty,
the results remain almost the same.

The results of Theorem 4.1 and Corollary 4.1 can be used in the case of experimental
pairwise comparison matrices. A set of 384 PRM taken from real-world AHP analyses were
studied in Gass and Standard (2002). The experimental distribution of the numbers in the
basic AHP comparison scale was unexpected. It seems that for these real-world problems,
the decision makers did not use with large experimental probability the extreme comparison
values of 8 and 9 (see Table 1 in Gass and Standard (2002). Consequently, in order to esti-
mate the inconsistency more precisely, the influence of the pairwise comparisons determined
by the decision makers can be taken into consideration through the largest ratio numbers,
respectively.

Based on Theorem 4.1 and Table 3, the inconsistency ratio C R(4, 5) can be determined. By
generating all the possible PRM (96 = 531, 441 matrices) with C M ≤ 1/3 (1,377 matrices)
on the ratio scale 1/5, . . . , 1, . . . , 5, Fig. 1 shows that the possible values of C M under 1/3 are
from the set {0, 1/6, 1/5, 1/4, 1/3} and the total number of different pairs (C M, C R(4, 5))

is 14. We can state that the threshold C M ≤ 1/3 corresponds to C R(4, 5) ≤ 0.0336(3.36%).
It follows that Koczkodaj’s inconsistency index for 4 × 4 pairwise comparison matrices with
respect to ratio scale 1/5, . . . , 1, . . . , 5, is stricter than that of Saaty’s. It is noted that the 10%
rule allows much higher C M-inconsistency when using the ratio scale 1/9, . . . , 1, . . . , 9. An
example is as follows:

A =

⎛
⎜⎜⎝

1 1/8 2 6
8 1 7 9

1/2 1/7 1 2
1/6 1/9 1/2 1

⎞
⎟⎟⎠ ,

where C R = C R(4, 9) = 9.47% and C M = 0.8125.
It is emphasized that the threshold C M ≤ 1/3 is given for 4 × 4 pairwise comparison

matrices with respect to the ratio scale 1/5, . . . , 1, . . . , 5. A question arises, namely, how
to determine the threshold values for higher dimensions. A possible way is to use the “one
grade off” or “two grades off” rules. By Koczkodaj (1997), “An acceptable threshold of
inconsistency is 0.33 because it means that one judgement is not more than two grades of
the scale “different” from the remaining two judgements.”

Fig. 1 Koczkodaj’s C M ≤ 1/3
rule corresponds to
C R(4, 5) ≤ 3.36%
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Fig. 2 C M ≤ 1/3 threshold
corresponds to G D ≤ 2/3

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

CM

G
D

Let us consider the general form of 3 × 3 positive reciprocal matrices formulated in (3.1).
In the consistent cases, a = b/c, 1/a = c/b, b = ac, 1/b = 1/(ac), c = b/a, 1/c = a/b.
In the inconsistent cases, the approximation of an element by the other two elements can be
considered by the grade difference

G D(a, b, c) = min
{

max {| a − b/c |, | 1/a − c/b |},
max {| b − ac |, | 1/b − 1/(ac) |} , max {| c − b/a |, | 1/c − a/b |}

}
.

Thus, the one grade off rule and the two grades off rule are

G D(a, b, c) ≤ 1 and G D(a, b, c) ≤ 2,

respectively.
In the case of matrices A of higher orders, the one grade off rule and the two grades off

rule (Koczkodaj et al. 1997) are

G D(A) = max
{

G D(a, b, c) for each triad (a, b, c) in A
}

≤ 1 or 2.

Figure 2 shows that the threshold C M ≤ 1/3 corresponds to G D ≤ 2/3, which is close
to the one grade off rule.

5 Inconsistency of random pairwise comparison matrices

Golden and Wang (1990) computed the random inconsistency indices and Forman (1990)
the same for incomplete PRM. Dodd et al. (1993) investigated the frequency distributions
of random inconsistency indices and their statistical significance levels. Lane and Verdini
(1989) determined the exact distribution of random inconsistency indices for 3 × 3 matrices,
and random samples of 2,500 matrices were produced and analyzed for 4 × 4 to 10 × 10 and
selected higher-order matrices, as well as stricter consistency requirements for 3×3 and 4×4
pairwise comparison matrices were suggested. Standard (2000) generated randomly 1,000
PRM, but restricted the C Rn as follows. For n = 3, 4 or 5, C Rn < 0.1 was required, for
n = 6, C Rn < 0.2, and for n = 7, C Rn < 0.3. The computer was very slow in generating
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the random, low C Rn , P RM regarding sizes 6 and 7 and the results became more scattered
as n increased. Additionally, regarding n = 7, there were no results for C Rn < 0.1. Due to
these conditions, the low C Rn analysis was not run regarding matrices of sizes 8 and 9. A
conclusion is that Saaty’s rule is statistically very strict for large PRM.

We have performed a statistical analysis of CR and CM inconsistencies. The aim of our
simulation was to analyze the empirical distributions of the maximal eigenvalues λmax of
randomly generated pairwise comparison matrices. The elements ai j (i < j) were randomly
chosen from the scale

1

9
,

1

8
,

1

7
, . . . ,

1

2
, 1, 2, . . . , 8, 9,

and a ji is defined as
1

ai j
. In the paper, the assumption of equal probabilities is used. In order

to have equal probabilities ( 1
17 ), we used Matlab’s rand function for simulating uniform

distribution, the period of which is 21492. We have computed the average value of λmax of
randomly generated pairwise comparison matrices which is the basis of the mean random
consistency index (RIn). The values of λmax corresponding to the C Rn = 10%, the number
of matrices which satisfies the C Rn ≤ 10%, G D ≤ 1 and G D ≤ 2 conditions were also
computed. (It follows from the definition of C Rn that—if the comparisons are carried out
randomly—the expected value of C Rn is 1.) In Table 4, n varies from 3 to 10, the sample
size is 107 for all n.

In the case of 3 × 3 matrices, the sample size 107 is much larger than the number of differ-
ent matrices 173 = 4,913. Thus, many (or all) of the matrices may have been counted more
than once. The ratios of the numbers of matrices holding C R ≤ 10%, G D ≤ 1 and G D ≤ 2
compared to the sample size have been also computed if each matrix counted exactly once,
and found to have almost the same results as above.

Our simulations are visualized in histograms, too. Figure 3a–h show the empirical distri-
butions of λmax on the lower horizontal axis and the corresponding consistency ratio C Rn on
the upper horizontal axis. As n increases, the shape of distribution of λmax gets similar to a
normal one in our sample. For n = 3, a notable part of the randomly generated matrices sat-
isfies the C Rn ≤ 10% rule. The number of matrices with C Rn ≤ 10% drastically decreases
as n increases (see Table 4). Regarding n = 8, 9, 10, we have not found a matrix in the
sample of ten million with acceptable inconsistency. Based on the results, it seems that the
meaning of 10% for n = 3 is very different from n = 8, which is one of the weaknesses of
the inconsistency ratio by Saaty. It is also interesting that consistency and randomness do not
exclude each other: 1.7% of 3 × 3 random matrices (and 0.0014% of 4 × 4 random matrices)
are consistent.

6 Inconsistency of asymmetry

A conceptual weakness of some weighting method is related to the issue of asymmetry. The
question: “To what extent does alternative i dominate j?” may be replaced by the question
“To what extent is j dominated by i?” The answers to these questions are logically reciprocal.
If a technique is applied first to the pairwise comparison matrix A, yielding a solution w, and

then to the transpose AT , yielding a solution w′, is
wi

w j
= w′

j

w′
i

for every pair (i, j)?

Eigenvector Method does not possess this asymmetry property, since the principal right
and left eigenvectors of A are not elementwise reciprocal in the cases of inconsistent pairwise
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Fig. 3 λmax and C R values of: (a) 3 × 3 random matrices, (b) 4 × 4 random matrices, (c) 5 × 5 random
matrices, (d) 6 × 6 random matrices, (e) 7 × 7 random matrices, (f) 8 × 8 random matrices, (g) 9 × 9 random
matrices, (h) 10 × 10 random matrices

comparison matrices. Consequently, a conceptual limitation of EM is the lack of asymmetry
with respect to A and AT , which means that, for n ≥ 4, there exist, generally, two competing
solutions (Johnson et al. 1979). Now, it will be shown that the property of asymmetry is
related to the inconsistency.

Definition 6.1 Let A be a pairwise comparison matrix, w and w′ the priority vectors of A
and AT , respectively. The invariance under transpose holds if

wi ≥ w j implies w′
i ≤ w′

j , ∀(i, j), i, j = 1, . . . , n. (6.1)

It follows from the definitions that LSM, χ2 M , and LLSM defined in Table 1 always fulfil
the property of invariance under transpose. SVDM takes this asymmetry, in some sense, into
account.

Lemma 6.1 SVDM fulfils the invariance under transpose if and only if

uivi + 1

u jv j + 1
≥ vi

v j
implies

uivi + 1

u jv j + 1
≤ ui

u j
, ∀(i, j) i, j = 1, . . . , n, (6.1)

where u and v are the left and right singular vectors belonging to the largest singular value
of A, respectively.
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Fig. 3 continued

Proof By the formula in Table 1, the invariance under transpose holds if and only if

ui + 1

vi
≥ u j + 1

v j
implies vi + 1

ui
≤ v j + 1

u j
, ∀(i, j) i, j = 1, . . . , n,

which is equivalent to

uivi + 1

u jv j + 1
≥ vi

v j
implies

uivi + 1

u jv j + 1
≤ ui

u j
, ∀(i, j) i, j = 1, . . . , n.

��

108 matrices of size 5× 5 have been generated randomly in order to detect the rank rever-
sals of the weights computed from the left and right eigenvectors. Based on our hypothesis,
the frequency of rank reversals varies as the CR inconsistency ratio changes. By Table 5 and
Fig. 4, the frequency of rank reversals increases as the CR increases. We can conclude that
the larger the CR-inconsistency is, the more often the EM violates the property of invariance
under transpose. Since no “cut off” point appears in Fig. 4, this seems to be another reason
for reconsidering the asymmetry property.

The next example (Dodd et al. 1995) shows that a good inconsistency ratio CR does not
exclude the rank reversal between the weights computed from the left and right eigenvectors.
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Table 5 Frequency of rank reversals of the weight vectors corresponding to the left and right eigenvectors
with respect to different levels of inconsistency ratio CR

Levels of inconsistency
ratio CR

Number of rank rever-
sals of the weight
vectors corresponding
to the left and right
eigenvectors

Number of matrices Frequency of rank
reversals

C R ≤ 0.01 8 162 0.049
0.01 < C R ≤ 0.02 81 1138 0.071
0.02 < C R ≤ 0.03 288 3414 0.084
0.03 < C R ≤ 0.04 685 7130 0.096
0.04 < C R ≤ 0.05 1253 12645 0.099
0.05 < C R ≤ 0.06 2096 19827 0.106
0.06 < C R ≤ 0.07 3342 29686 0.113
0.07 < C R ≤ 0.08 5284 41400 0.128
0.08 < C R ≤ 0.09 7896 55105 0.143
0.09 < C R ≤ 0.10 10819 70885 0.153
0.10 < C R ≤ 0.11 14371 88104 0.163
0.11 < C R ≤ 0.12 18743 1.07 × 105 0.174
0.12 < C R ≤ 0.13 23362 1.28 × 105 0.182
0.13 < C R ≤ 0.14 27841 1.50 × 105 0.185
0.14 < C R ≤ 0.15 33402 1.73 × 105 0.193
0.15 < C R ≤ 0.16 39344 1.97 × 105 0.199
0.16 < C R ≤ 0.17 44851 2.21 × 105 0.203
0.17 < C R ≤ 0.18 50847 2.46 × 105 0.207
0.18 < C R ≤ 0.19 57625 2.69 × 105 0.214
0.19 < C R Not analyzed 9.82 × 107 Not analyzed

Fig. 4 Frequency of rank reversals of the weight vectors corresponding to the left and right eigenvectors with
respect to different levels of inconsistency ratio CR

Let

A =

⎛
⎜⎜⎜⎜⎝

1 1 3 9 9
1 1 5 8 5

1/3 1/5 1 9 5
1/9 1/8 1/9 1 1
1/9 1/5 1/5 1 1

⎞
⎟⎟⎟⎟⎠ ,
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where C R(A) = 0.0820, the weights of the right eigenvector

wT = (36.5652, 38.9564, 16.7155, 3.4693, 4.2936),

and the weights of the left eigenvector

w′T = (40.6431, 36.4208, 15.0669, 3.4391, 4.4302).

It is interesting that G D(A) = 4.1111. There remain open questions, namely, how to detect
and eliminate the inconsistency of asymmetry.

7 Concluding remarks

In the paper, some theoretical and numerical properties of Saaty’s and Koczkodaj’s incon-
sistencies of PRM are investigated. Based on the results, it seems that the determination
of the inconsistency of PRM has some drawbacks, thus the improvement of the notion of
inconsistency should be necessary.

Related to Saaty’s inconsistency ratio, some basic questions are as follows:
What is the relation between an empirical matrix from human judgements and a randomly

generated one? Is an index obtained from several hundreds of randomly generated matrices
the right reference point for determining the level of inconsistency of pairwise comparison
matrix built up from human decisions, for a real decision problem? How to take the size of
matrices into account in a more precise form?

Related to Koczkodaj’s consistency index, a major question seems to be the elaboration
of the thresholds in higher dimensions or to replace the index by a refined grade off rule.

The existence of the inconsistency of asymmetry shows the complexity of the problem.
By the example in Sect. 6, Saaty’s consistency of PRM is insufficient to exclude asymmetric
inconsistency, therefore, this latter should be considered as a separate issue. Thus, it seems
that only one inconsistency index is insufficient for describing the inconsistency.
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